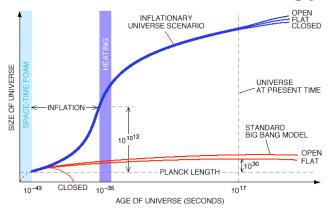
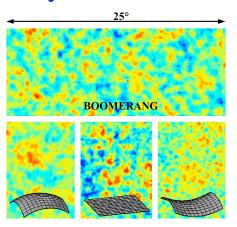
Understanding

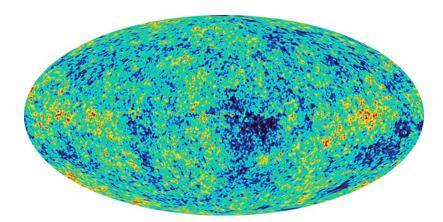
Introduction

Overview of Cosmology



Bayesian Inference



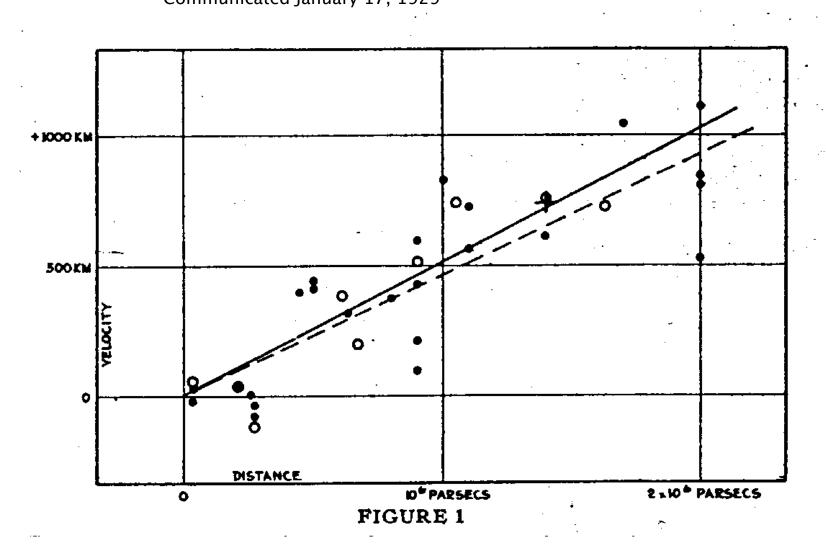


Current and Future Data

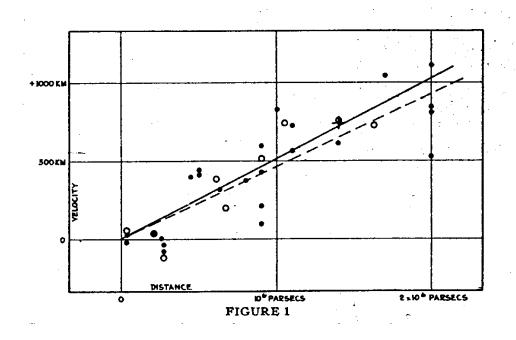
The Computational Challenge!

From the Proceedings of the National Academy of Sciences Volume 15: March 15, 1929: Number 3 A RELATION BETWEEN DISTANCE AND RADIAL VELOCITY AMONG EXTRA-GALACTIC NEBULAE

By Edwin Hubble Mount Wilson Observatory, Carnegie Institution of Washington Communicated January 17, 1929



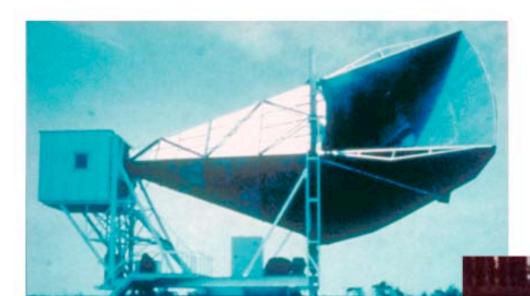
Inferring the Expansion Rate (and Age) of the Universe



$$v_i = H_0 r_i$$

- Errors in both Velocity and Distance measurements what is the best estimate of the Hubble constant??
- A Bayesian approach to this problem later...

DISCOVERY OF COSMIC BACKGROUND

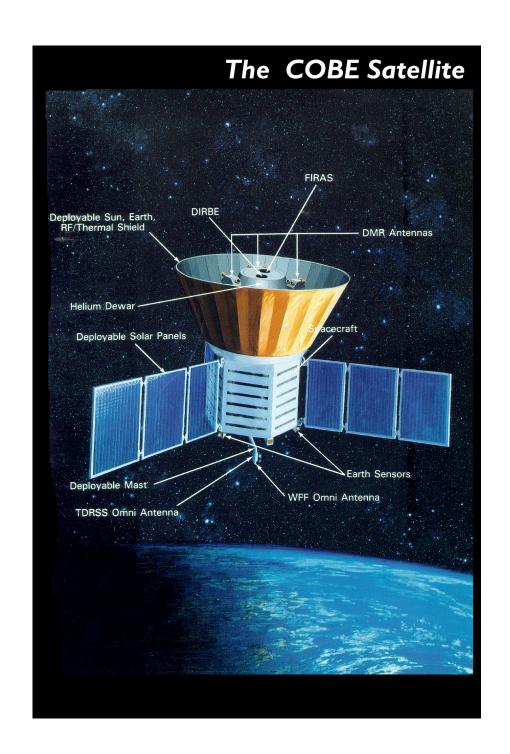


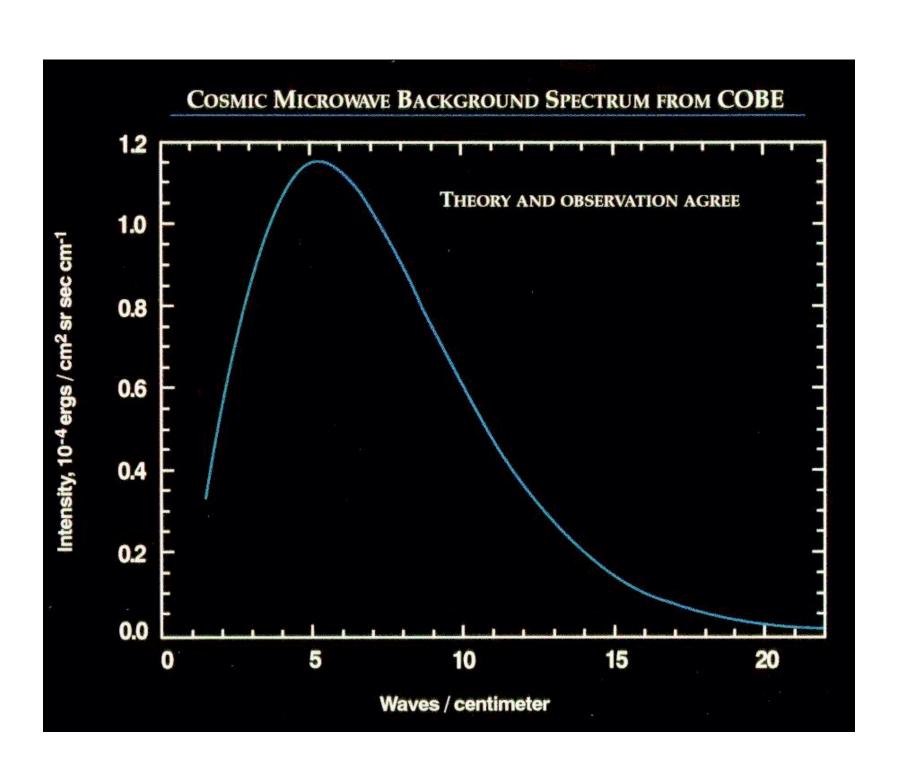
Microwave Receiver

Arno Penzias

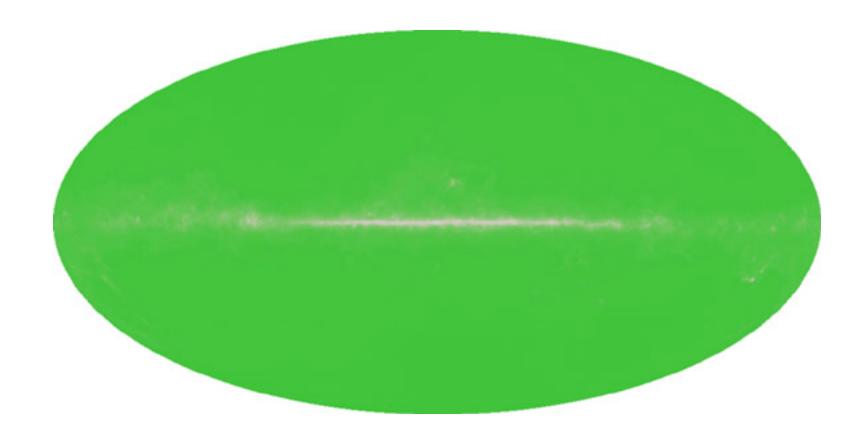
MAP990045

Robert Wilson



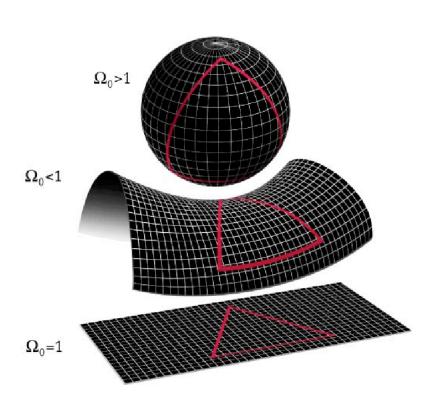


The Horizon Problem...



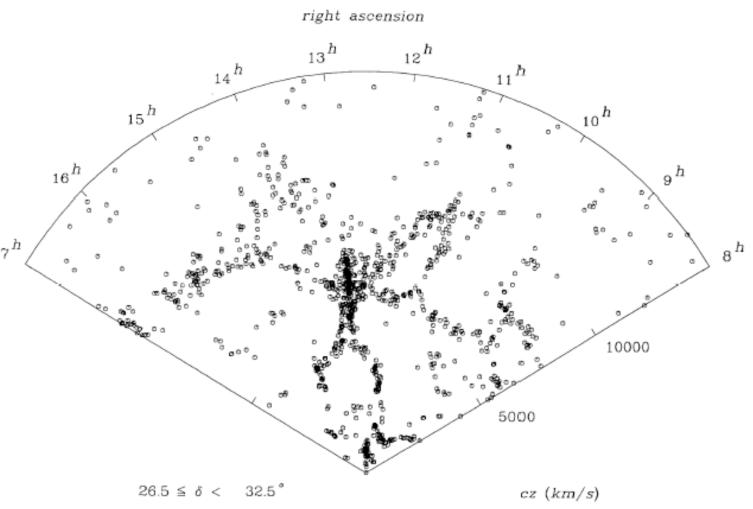
• Why is the CMB temperature so uniform across the sky??

The Flatness Problem...



- Homogenous and Isotropic Universe can have three possible geometries
- Universe appears remarkably close to flat why?

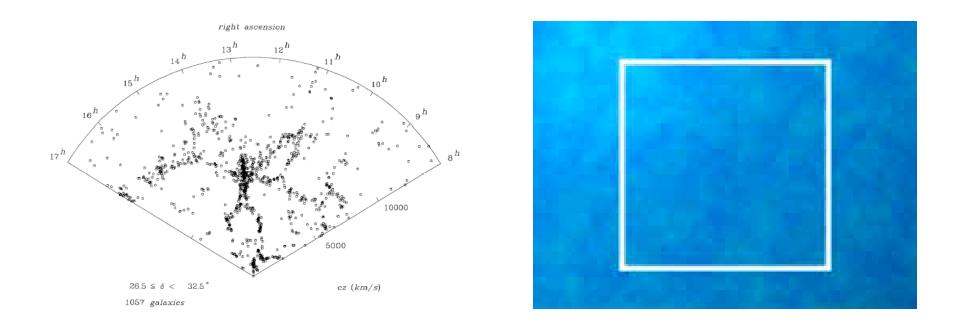
Early Redshift Surveys



Huchra et al, 1990ApJS...72..433H

1057 galaxies

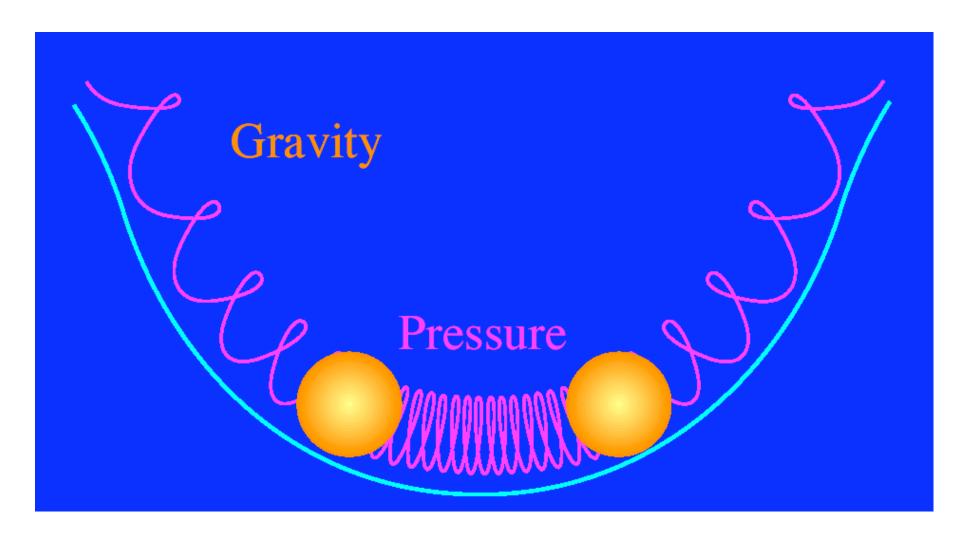
Gravitational Collapse to form Large-Scale Structure



G. Bryan, and M. Norman, Lab for Computational Astrophysics, Univ. of Illinois, Urbana-Champaign

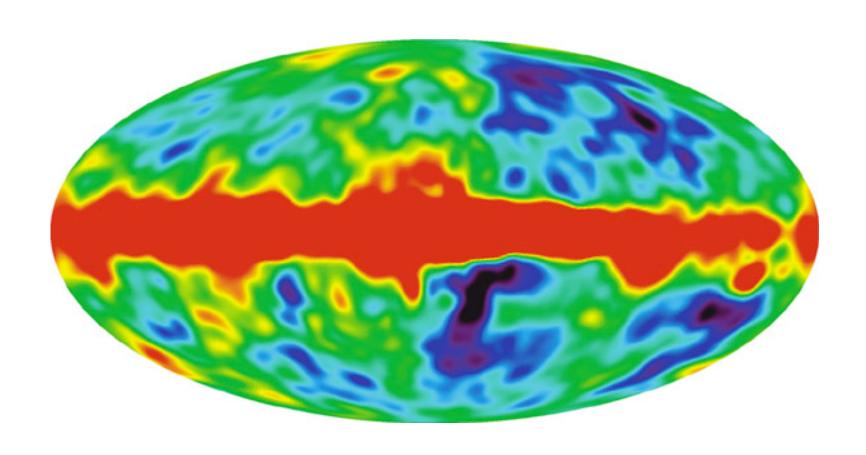
http://zeus.ncsa.uiuc.edu/mpeg/comoving.mpg

Fluctuations in the CMB

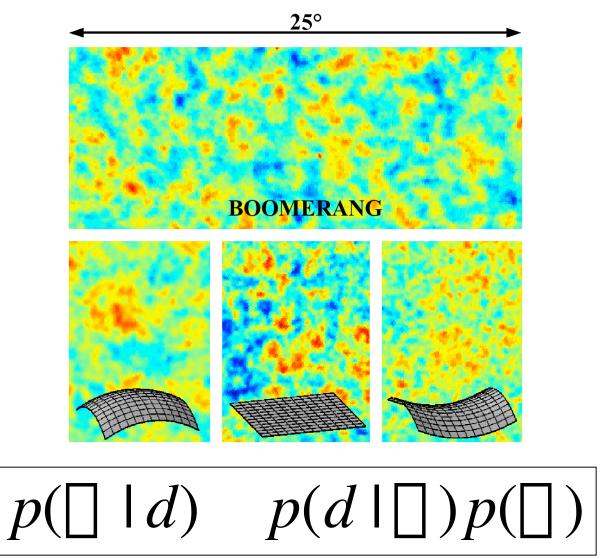


W. Hu, see http://background.uchicago.edu/~whu/

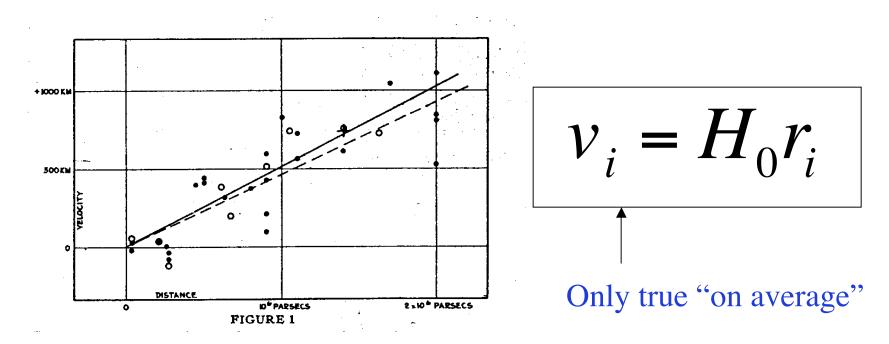
Seeds of Large-Scale Structure Detected!



Next Step: Inferring the Curvature of the Universe!



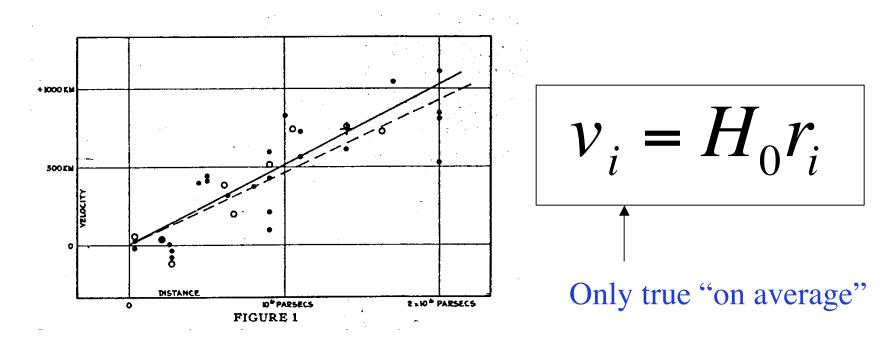
Example: Bayesian Inference of the Hubble Constant



Bayes Theorem for the Hubble constant:

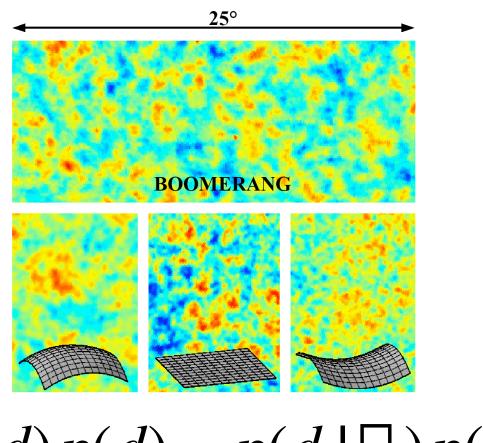
$$p(H_0 | v_i, r_i) \quad p(v_i, r_i | H_0) p(H_0)$$

Bayesian Inference of the Hubble Constant



$$p(H_0 \mid v_i, r_i) \quad p(H_0) \frac{e^{\left[(v_i \mid H_0 r_i)^2 / 2(\left[\right]^2 + H_0^2 \right]^2)}}{\sqrt{2 \left[\left[\left[\right]^2 + H_0^2 \right]^2 \right]^{1/2}}}$$

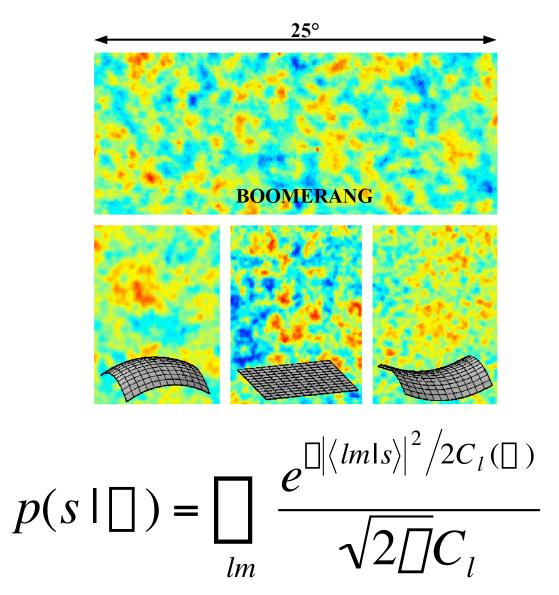
Inferring the Curvature of the Universe...



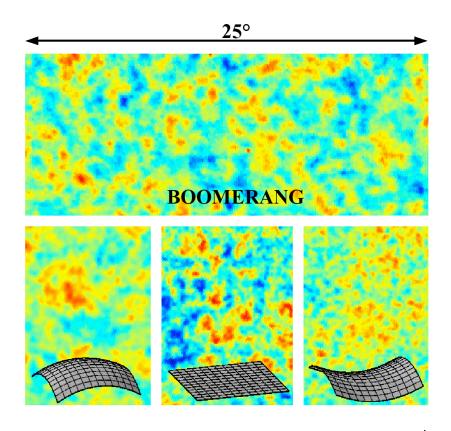
$$p(\square \mid d)p(d) = p(d \mid \square)p(\square)$$

"Backward"=Inference "Forward"=Simulation

No Noise: Simulation

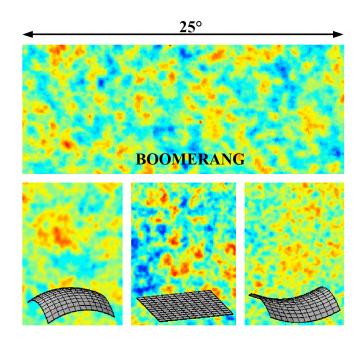


No Noise: Inference



$$p(\square \mid s) \quad p(\square) = \frac{e^{\square |\langle lm \mid s \rangle|^2 / 2C_l(\square)}}{\sqrt{2\square}C_l}$$

Inference with Noise...



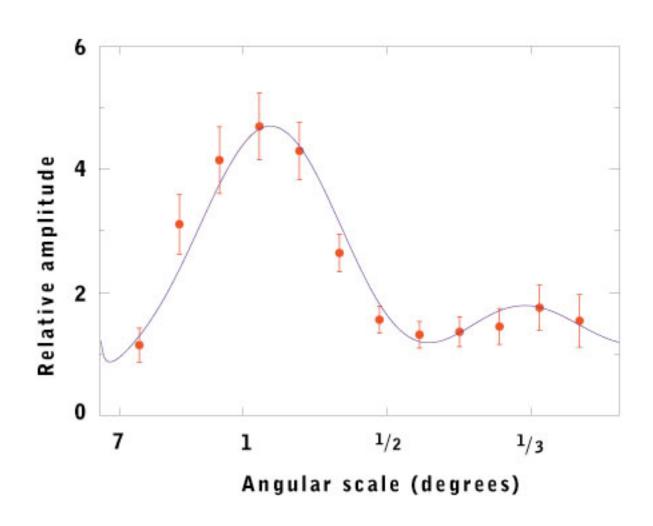
1) Write down the "forward" probabilities needed for simulation

$$p(\square, s, d) = p(d \mid s)p(s \mid \square)p(\square)$$

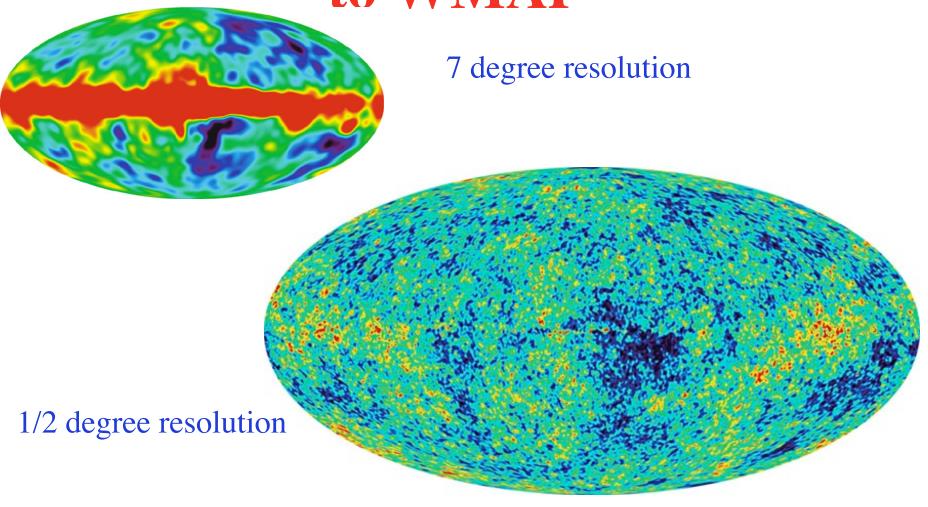
2) Solve for the Bayesian Posterior as a conditional probability

$$p(\square \mid d) = \square ds \ p(\square, s \mid d)$$

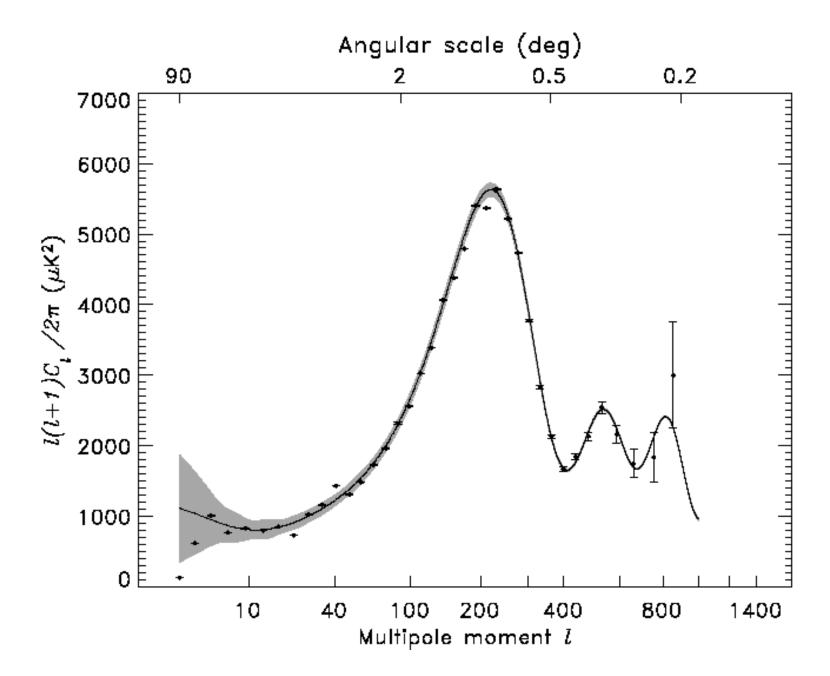
Power Spectrum - At One Degree Angular Resolution



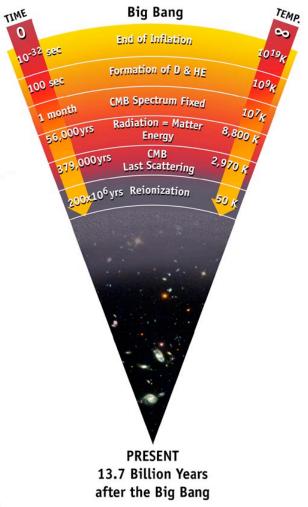
Recent Results: From COBE to WMAP

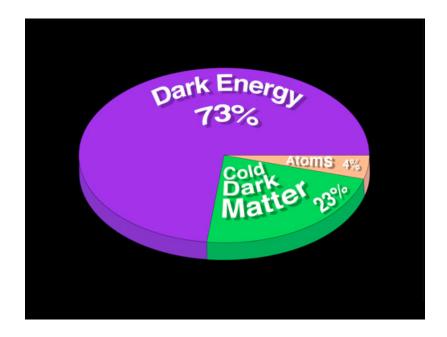


http://map.gsfc.nasa.gov

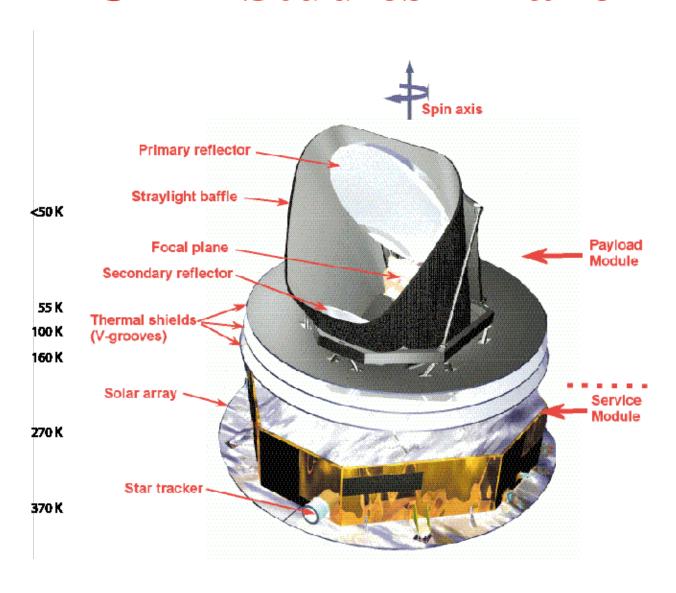


WMAP Results...

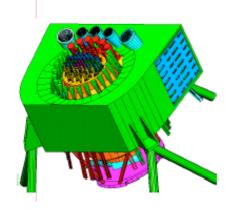


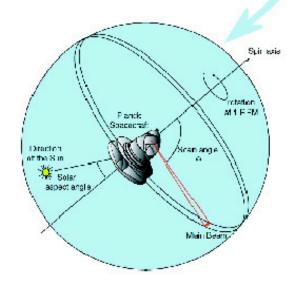


JPL's Role in the Future of CMB Studies - Planck

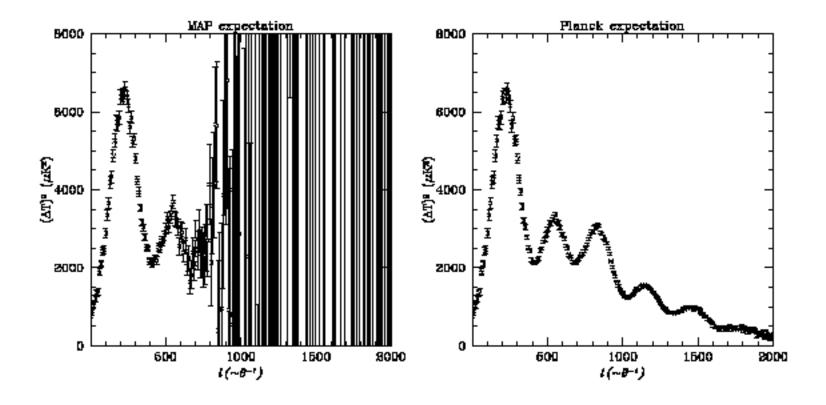


- Planck will spin at 1 rpm with its spin axis aligned with the Sun
 - Instruments scan nearly great circles on the sky
 - Entire sky observed every six months

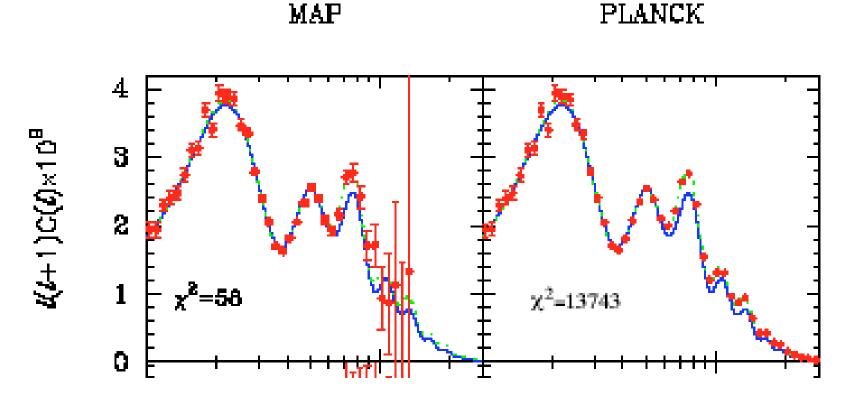




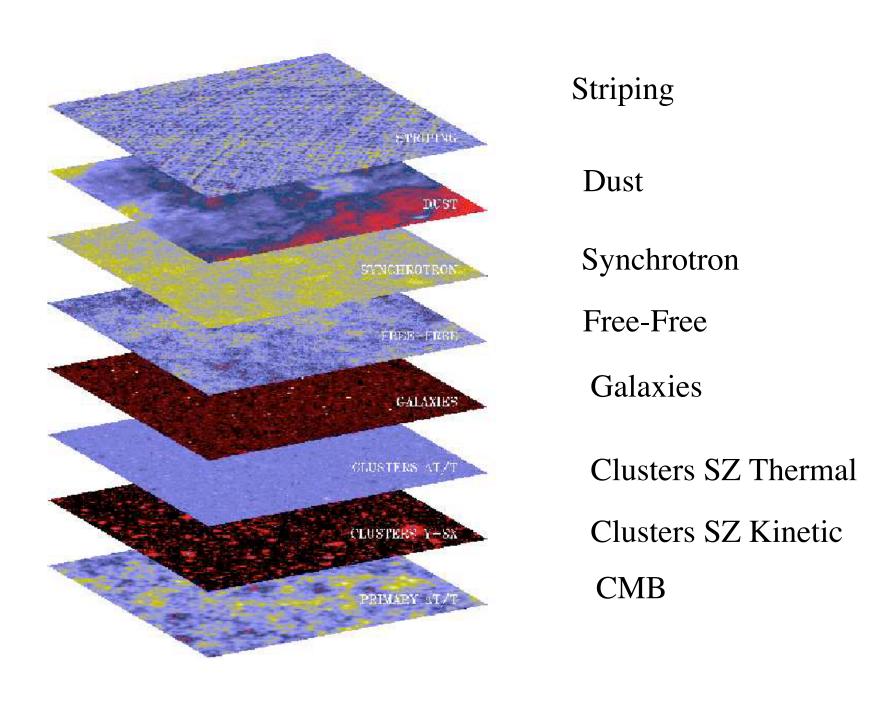
MAP vs. Planck - Expected 4 Year Sensitivity



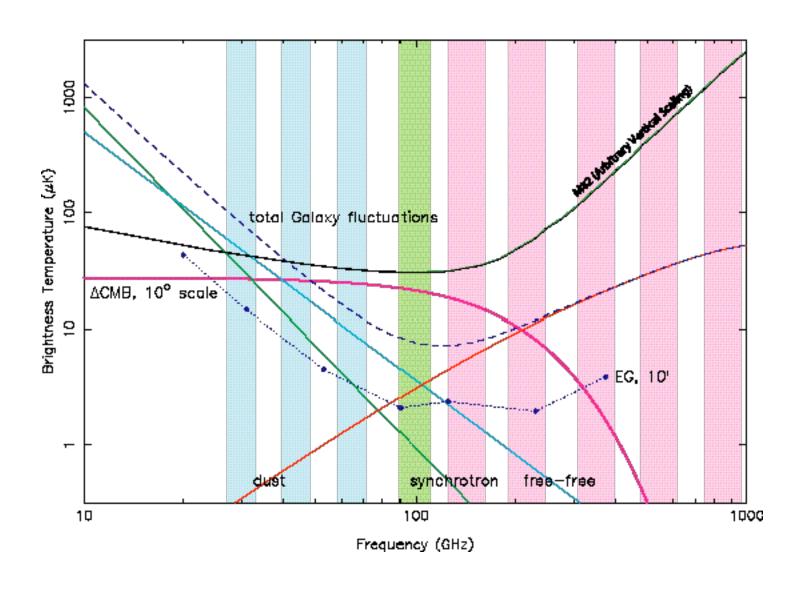
Planck: Resolving the Composition of the Universe!

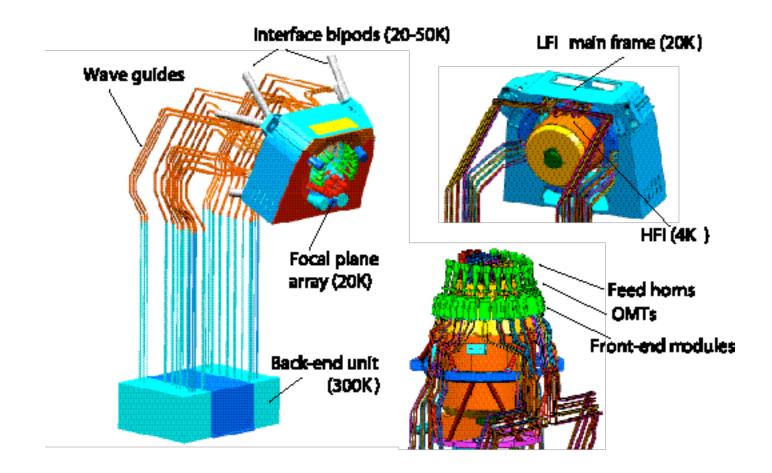


- Solid line shows a spatially flat model
- Dotted line shows a model with 24% variation in baryonic density, and 5% variation in cold dark matter density...

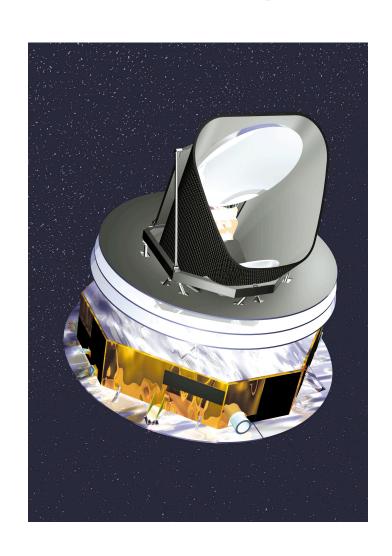


Foreground Frequency Response

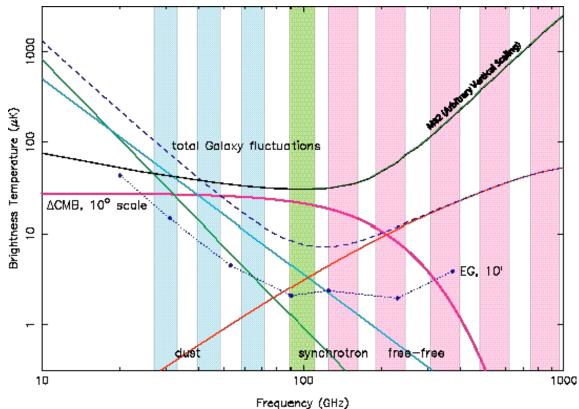




Planck -Computational Challenges



Combining Data Sets



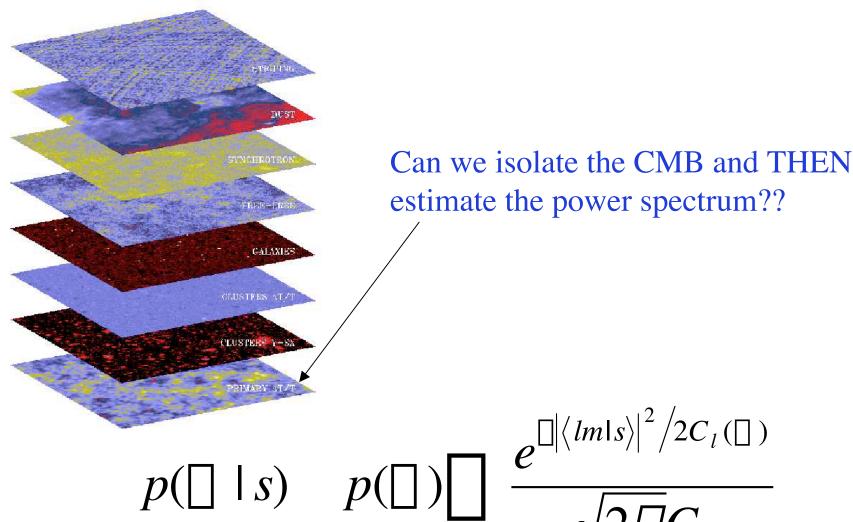
- Want to COMBINE data returned from all frequency channels, each with their own resolution, and noise properties
- Previous example: infer the Hubble constant from two very different types of measurements

Direct Maximization...

Computational Expense: $O[N^3]$

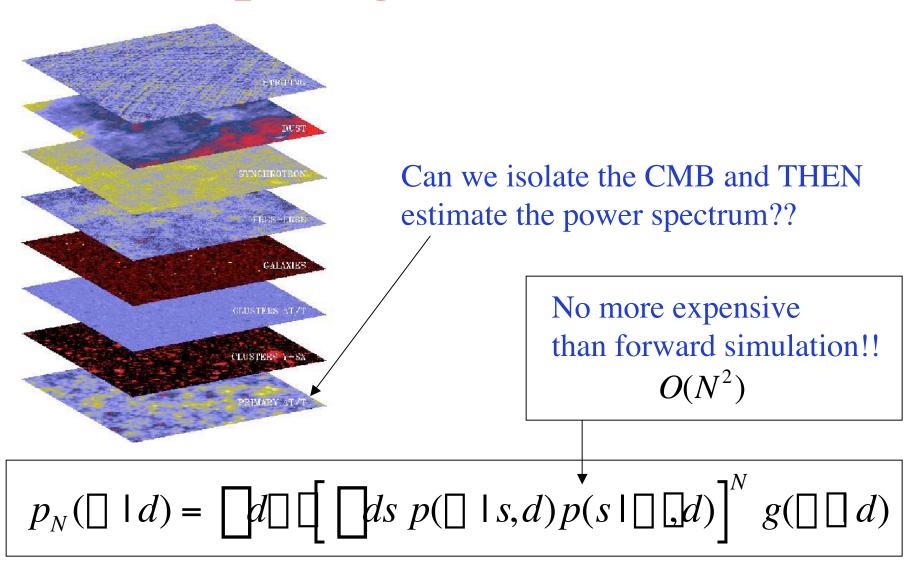
Flight	\mathcal{N}_p	Disc	RAM	Operations	Serial Time	Cray T3E Time
BOOMERanG NA	26,000	110 Gb	11 Gb	7.1×10^{14}	14 days	5 hours (64 PE)
MAXIMA 1	32,000	$170~\mathrm{Gb}$	$17~\mathrm{Gb}$	1.3×10^{15}	25 days	9 hours (64 PE)
MAXIMA 2	80,000	$1~{ m Tb}$	$100~\mathrm{Gb}$	2.1×10^{16}	13 months	$18~\mathrm{hours}~(512~\mathrm{PE})$
BOOMERanG LDB	450,000	$30~{ m Tb}$	$3~{ m Tb}$	3.7×10^{18}	196 years	$140~\mathrm{days}~(512~\mathrm{PE})$

No Noise: Inference is Easy

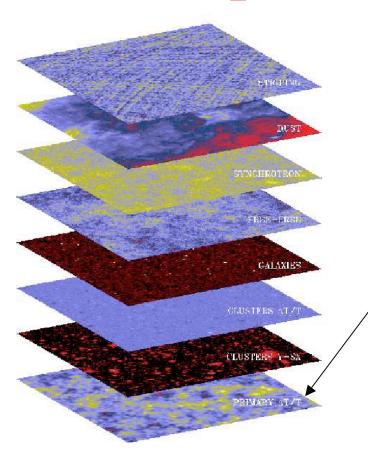


$$\frac{e^{\left|\left|\left\langle lmls\right\rangle\right|^{2}/2C_{l}\left(\right|\right)}}{\sqrt{2\Box C_{l}}}$$

Computing the Posterior...



Computing the Posterior...



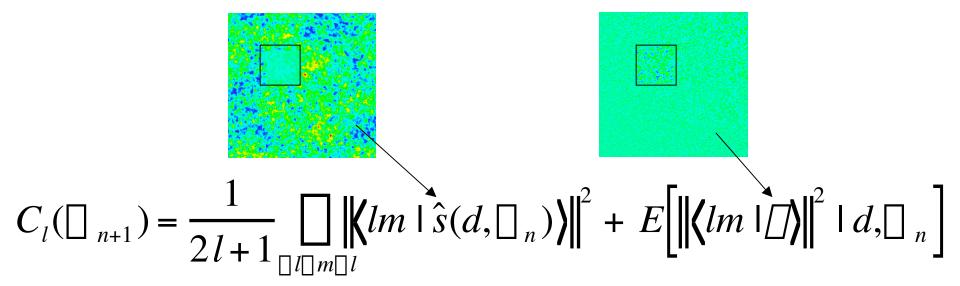
Can we isolate the CMB and THEN estimate the power spectrum??

Conditionally independent of the data!!

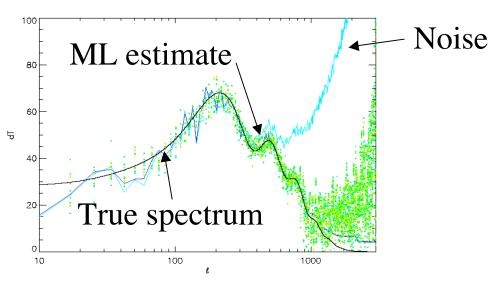
$$p(\square \mid s,d) = p(\square \mid s)$$

$$p_N(\square \mid d) = \square d\square \square \square ds \ p(\square \mid s) p(s \mid \square \square d)^N \ g(\square \square d)$$

Monte Carlo Bayesian Power Spectrum Estimator

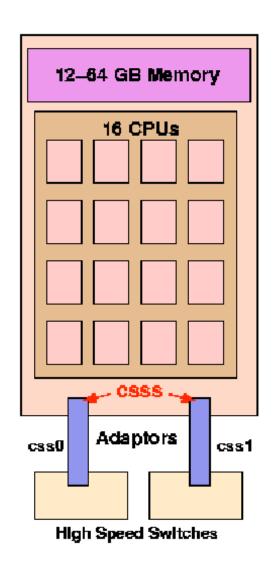


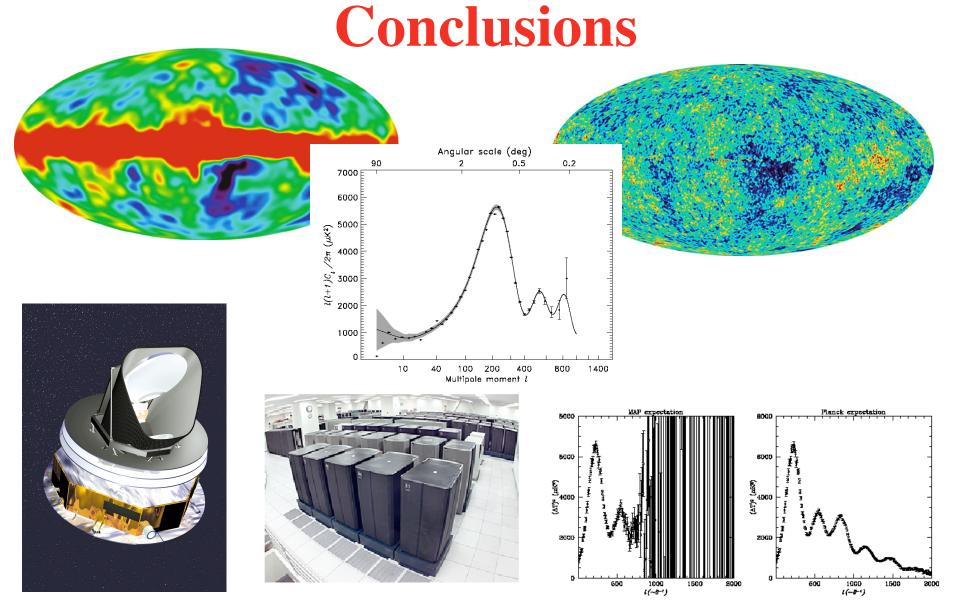
Iteration of Expectation Maximization algorithm gives result ...



NERSC-Seaborg

Over 400 nodes of 16 processors!!





http://cs.jpl.nasa.gov/lectures.html